The Gervais-Neveu-Felder equation and the quantum Calogero-Moser systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Gervais-Neveu-Felder equation and the quantum Calogero-Moser systems

We quantize the spin Calogero-Moser model in the R-matrix formalism. The quantum R-matrix of the model is dynamical. This R-matrix has already appeared in Gervais-Neveu’s quantization of Toda field theory and in Felder’s quantization of the Knizhnik-Zamolodchikov-Bernard equation. PAR LPTHE 95-25 ∗L.P.T.H.E. Université Paris VI (CNRS UA 280), Box 126, Tour 16, 1er étage, 4 place Jussieu, 75252 ...

متن کامل

The Gervais-Neveu-Felder equation for the Jordanian quasi-Hopf Uh;y(sl(2)) algebra

Using a contraction procedure, we construct a twist operator that satisfies a shifted cocycle condition, and leads to the Jordanian quasi-Hopf Uh;y(sl(2)) algebra. The corresponding universal Rh(y) matrix obeys a Gervais-Neveu-Felder equation associated with the Uh;y(sl(2)) algebra. For a class of representations, the dynamical Yang-Baxter equation may be expressed as a compatibility condition ...

متن کامل

Integrable spin Calogero-Moser systems

We introduce spin Calogero-Moser systems associated with root systems of simple Lie algebras and give the associated Lax representations (with spectral parameter) and fundamental Poisson bracket relations. The associated integrable models (called integrable spin CalogeroMoser systems in the paper) and their Lax pairs are then obtained via Poisson reduction and gauge transformations. For Lie alg...

متن کامل

Lectures on Calogero-moser Systems

Calogero-Moser systems, which were originally discovered by specialists in integrable systems, are currently at the crossroads of many areas of mathematics and within the scope of interests of many mathematicians. More specifically, these systems and their generalizations turned out to have intrinsic connections with such fields as algebraic geometry (Hilbert schemes of surfaces), representatio...

متن کامل

Quantum Calogero-Moser Models: Integrability for all Root Systems

The issues related to the integrability of quantum Calogero-Moser models based on any root systems are addressed. For the models with degenerate potentials, i.e. the rational with/without the harmonic confining force, the hyperbolic and the trigonometric, we demonstrate the following for all the root systems: (i) Construction of a complete set of quantum conserved quantities in terms of a total...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 1996

ISSN: 0010-3616,1432-0916

DOI: 10.1007/bf02099449